论文标题

用于无人用的灾难救援的安全且智能的数据共享计划

A Secure and Intelligent Data Sharing Scheme for UAV-Assisted Disaster Rescue

论文作者

Wang, Yuntao, Su, Zhou, Xu, Qichao, Li, Ruidong, Luan, Tom H., Wang, Pinghui

论文摘要

当陆地通信基础设施下降时,无人驾驶飞机(UAV)有可能在灾难网站建立灵活且可靠的紧急网络。然而,由于不受信任的环境和开放式无人机网络,在数据传输期间,无人机可能会出现潜在的安全威胁。此外,无人机通常具有有限的电池和计算能力,因此在执行复杂的救援任务时,它们无法承受重型安全供应操作。在本文中,我们开发了RescueChain,这是无人机辅助灾难救援的安全有效的信息共享计划。具体来说,我们首先实施一个基于重量区块链的框架,以保护灾难和无生成不清的不当行为实体下的数据共享。设计了一种基于声誉的共识协议,以改善弱连接的环境,提高共识效率并促进无人机的诚实行为。此外,我们通过利用地面车辆作为移动雾节来卸载无人机的重型数据处理和存储任务,从而引入了一种新型的车辆雾计算(VFC)基于脱链机制。为了卸载从UAVS到具有空闲计算资源的地面车辆的计算任务,通过选择在分配问题的Stackelberg游戏公式中实现平衡的回报来开发最佳分配策略。由于缺乏有关网络模型参数和用户在实践环境中的私人成本参数的知识,我们还设计了一种基于两层深的增强学习算法,以寻求具有提高学习效率的无人机和车辆的最佳支付和资源策略。仿真结果表明,RescueChain可以有效地加速共识过程,提高卸载效率,降低能耗并提高用户的收益。

Unmanned aerial vehicles (UAVs) have the potential to establish flexible and reliable emergency networks in disaster sites when terrestrial communication infrastructures go down. Nevertheless, potential security threats may occur on UAVs during data transmissions due to the untrusted environment and open-access UAV networks. Moreover, UAVs typically have limited battery and computation capacity, making them unaffordable for heavy security provisioning operations when performing complicated rescue tasks. In this paper, we develop RescueChain, a secure and efficient information sharing scheme for UAV-assisted disaster rescue. Specifically, we first implement a lightweight blockchain-based framework to safeguard data sharing under disasters and immutably trace misbehaving entities. A reputation-based consensus protocol is devised to adapt the weakly connected environment with improved consensus efficiency and promoted UAVs' honest behaviors. Furthermore, we introduce a novel vehicular fog computing (VFC)-based off-chain mechanism by leveraging ground vehicles as moving fog nodes to offload UAVs' heavy data processing and storage tasks. To offload computational tasks from the UAVs to ground vehicles having idle computing resources, an optimal allocation strategy is developed by choosing payoffs that achieve equilibrium in a Stackelberg game formulation of the allocation problem. For lack of sufficient knowledge on network model parameters and users' private cost parameters in practical environment, we also design a two-tier deep reinforcement learning-based algorithm to seek the optimal payment and resource strategies of UAVs and vehicles with improved learning efficiency. Simulation results show that RescueChain can effectively accelerate consensus process, improve offloading efficiency, reduce energy consumption, and enhance user payoffs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源