论文标题
用MHD模拟跟踪ICME等离子体
Tracing the ICME plasma with a MHD simulation
论文作者
论文摘要
星际冠状质量射血(ICME)血浆的化学组成的测定是一个空旷的问题。更具体地说,尚不完全了解太阳能干扰期间太阳能电晕等离子体的遥感观察如何演变成远离太阳的原位测量的等离子体特性。背景星际等离子体的环境条件对于太空天气很重要,因为它们会影响干扰的演变,到达时间和地理效应。反向原位和MHD方法(RIMAP)是一种直接从1 AU处获得的原位测量值重建黄道平面(包括磁性parker螺旋)上的地球层的技术。它结合了分析和数值方法,保留了风流线的小规模纵向变化。在这项工作中,我们使用RIMAP测试ICME与星际介质的相互作用。我们对均匀的非磁性(即没有内部通量绳)的繁殖对云进行建模,从0.1 au的800 km s-1开始,至1.1 au。我们使用冥王星MHD代码进行的3D磁水动力学(MHD)模拟显示了由云扩展不断驱动的ICME前面的压缩前端的形成。使用被动示踪剂,我们发现初始ICME材料在传播过程中不会碎片,并且我们量化了传播等离子体云与环境太阳风等离子体的混合,可以在1 AU下检测到。
The determination of the chemical composition of interplanetary coronal mass ejection (ICME) plasma is an open issue. More specifically, it is not yet fully understood how remote sensing observations of the solar corona plasma during solar disturbances evolve into plasma properties measured in situ away from the Sun. The ambient conditions of the background interplanetary plasma are important for space weather because they influence the evolutions, arrival times, and geo-effectiveness of the disturbances. The Reverse In situ and MHD APproach (RIMAP) is a technique to reconstruct the heliosphere on the ecliptic plane (including the magnetic Parker spiral) directly from in situ measurements acquired at 1 AU. It combines analytical and numerical approaches, preserving the small-scale longitudinal variability of the wind flow lines. In this work, we use RIMAP to test the interaction of an ICME with the interplanetary medium. We model the propagation of a homogeneous non-magnetised (i.e. with no internal flux rope) cloud starting at 800 km s-1 at 0.1 AU out to 1.1 AU. Our 3D magnetohydrodynamics (MHD) simulation made with the PLUTO MHD code shows the formation of a compression front ahead of the ICME, continuously driven by the cloud expansion. Using a passive tracer, we find that the initial ICME material does not fragment behind the front during its propagation, and we quantify the mixing of the propagating plasma cloud with the ambient solar wind plasma, which can be detected at 1 AU.