论文标题
通过结构知识共享在非IID图上的联合学习
Federated Learning on Non-IID Graphs via Structural Knowledge Sharing
论文作者
论文摘要
图神经网络(GNN)在建模图数据中表现出了优越性。由于联合学习的优势,联合图形学习(FGL)使客户能够以分布式的方式培训强大的GNN模型,而无需共享私人数据。联合系统中的核心挑战是非IID问题,在现实世界图数据中也广泛存在。例如,客户的本地数据可能来自不同的数据集甚至域,例如社交网络和分子,增加了FGL方法捕获普通共享知识和学习广义编码器的困难。从现实世界图数据集中,我们观察到某些结构属性由各个领域共享,从而在FGL中具有巨大的分享结构知识的潜力。在此灵感的启发下,我们提出了FedStar,这是一个FGL框架,该框架提取并分享了用于联合学习任务的跨性别结构信息。为了明确提取结构信息,而不是与节点特征一起编码它们,我们定义结构嵌入并使用独立的结构编码进行编码。然后,在以个性化的方式学习基于功能的知识的同时,将结构编码器共享,使FedStar能够捕获更多基于结构的域不变信息并避免功能未对准问题。我们对跨数据库和跨域非IID FGL设置进行了广泛的实验,这表明了FedStar的优越性。
Graph neural networks (GNNs) have shown their superiority in modeling graph data. Owing to the advantages of federated learning, federated graph learning (FGL) enables clients to train strong GNN models in a distributed manner without sharing their private data. A core challenge in federated systems is the non-IID problem, which also widely exists in real-world graph data. For example, local data of clients may come from diverse datasets or even domains, e.g., social networks and molecules, increasing the difficulty for FGL methods to capture commonly shared knowledge and learn a generalized encoder. From real-world graph datasets, we observe that some structural properties are shared by various domains, presenting great potential for sharing structural knowledge in FGL. Inspired by this, we propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph federated learning tasks. To explicitly extract the structure information rather than encoding them along with the node features, we define structure embeddings and encode them with an independent structure encoder. Then, the structure encoder is shared across clients while the feature-based knowledge is learned in a personalized way, making FedStar capable of capturing more structure-based domain-invariant information and avoiding feature misalignment issues. We perform extensive experiments over both cross-dataset and cross-domain non-IID FGL settings, demonstrating the superiority of FedStar.