论文标题

$ \ operatorname {pgl} _4的所有有限原始组的不变平滑四分之一表面(\ mathbb {c})$

Invariant Smooth Quartic Surfaces by all Finite Primitive Groups of $\operatorname{PGL}_4(\mathbb{C})$

论文作者

Avila, Jose, Ortiz, Guillermo, Troncoso, Sergio

论文摘要

对于每个有限的原始子组$ g $ of $ \ operatatorName {pgl} _4(\ mathbb {c})$,我们找到了所有平滑的$ g $ g $ invariant Quartic Quartic表面。我们还在$ \ permatatorName中找到所有忠实表示形式{pgl} _4(\ mathbb {c})$的平滑四分之一$ g $ g $ -Invariant表面:$ \ mathfrak {a} a} _5,_5,\ mathfrak { \ operatorName {psl_2(\ Mathbb {f} _7)},\ Mathfrak {a} _6,\ Mathbb {z} _2^4 \ rtimes \ rtimes \ rtimes \ mathbb {z} _5 $ and $ \ m artbb {z} _} _2^4 \ rtime dimme dimme dimme。这些组的原始表示完全是$ \ operatorName {pgl} _4(\ mathbb {c})$的子组,$ \ mathbb {p}^3 $不是$ g $ -susuper arion。作为副产品,我们表明,具有最大的投射自动形态的光滑四分之一表面由$ \ {x_0^4 + x_1^4 + x_1^4 + x_2^4 + x_3^4 + x_3^4 + 12 x_1 x_1 x_1 x_2 x_2 x_3 = 0 \} $(唯一到projective equivalence)。

For each finite primitive subgroup $G$ of $\operatorname{PGL}_4(\mathbb{C})$, we find all the smooth $G$-invariant quartic surfaces. We also find all the faithful representations in $\operatorname{PGL}_4(\mathbb{C})$ of the smooth quartic $G$-invariant surfaces by the groups: $\mathfrak{A}_5,\mathfrak{S}_5, \operatorname{PSL_2(\mathbb{F}_7)},\mathfrak{A}_6,\mathbb{Z}_2^4\rtimes\mathbb{Z}_5$ and $\mathbb{Z}_2^4\rtimes D_{10}$. The primitive representation of these groups are precisely the subgroups of $\operatorname{PGL}_4(\mathbb{C})$ for which $\mathbb{P}^3$ is not $G$-super rigid. As a byproduct, we show that the smooth quartic surface with the biggest group of projective automorphism is given by $\{ x_0^4 + x_1^4 + x_2^4 + x_3^4 + 12 x_0 x_1 x_2 x_3= 0\}$ (unique up to projective equivalence).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源