论文标题

搜索行为预测:超图透视

Search Behavior Prediction: A Hypergraph Perspective

论文作者

Han, Yan, Huang, Edward W, Zheng, Wenqing, Rao, Nikhil, Wang, Zhangyang, Subbian, Karthik

论文摘要

尽管双方购物图对搜索行为的模型很简单,但它们面临两个挑战:1)大多数项目是偶发地搜索的,因此具有嘈杂/稀疏的查询关联,从而导致\ textit {long-tail}分布。 2)不经常的查询更有可能链接到流行项目,导致另一个被称为\ textit {拆卸式混合}的障碍。为了应对这两个挑战,我们超越了两部分图,以获取超图形的观点,引入了一种新的范式,该范式从匿名客户参与会话中利用{auxiliary}信息来帮助\ usew suestline {main task {main Task {main Task} Query-Item链接链接预测。此辅助信息可在搜索日志的形式下以Web量表获得。我们将同一客户会话中出现的所有项目视为单个HyperEdge。假设是,客户会议中的项目是由共同的购物兴趣统一的。有了这些超钢,我们将原始的两分图扩大到新的\ textit {hypergraph}中。我们开发一个\ textIt {\ textbf {d} ual- \ textbf {c} hannel \ textbf {a}基于基于\ textbf {h} ypergraph neural never nection}(\ textbf {\ textbf {dcah}),从两个潜在的noise noise-edise anderem(y Intimem edise)协同(textbf {dcah})(通过这种方式,由于额外的超级蛋白质,尾巴上的项目可以更好地连接,从而增强了它们的链接预测性能。我们进一步将DCAH与自我监督的图表预训练和/或降落训练相结合,这两者都有效地减轻了脱层混合。对三个专有的电子商务数据集进行了广泛的实验表明,与基于GNN的基准相比,DCAH在平均倒数级别(MRR)}中最多可显着改善\ textbf {24.6 \%\%,而回忆中的\ textbf {48.3 \%\%}。我们的源代码可在\ url {https://github.com/amazon-science/dual-channel-hypergraph-neural-network}获得。

Although the bipartite shopping graphs are straightforward to model search behavior, they suffer from two challenges: 1) The majority of items are sporadically searched and hence have noisy/sparse query associations, leading to a \textit{long-tail} distribution. 2) Infrequent queries are more likely to link to popular items, leading to another hurdle known as \textit{disassortative mixing}. To address these two challenges, we go beyond the bipartite graph to take a hypergraph perspective, introducing a new paradigm that leverages \underline{auxiliary} information from anonymized customer engagement sessions to assist the \underline{main task} of query-item link prediction. This auxiliary information is available at web scale in the form of search logs. We treat all items appearing in the same customer session as a single hyperedge. The hypothesis is that items in a customer session are unified by a common shopping interest. With these hyperedges, we augment the original bipartite graph into a new \textit{hypergraph}. We develop a \textit{\textbf{D}ual-\textbf{C}hannel \textbf{A}ttention-Based \textbf{H}ypergraph Neural Network} (\textbf{DCAH}), which synergizes information from two potentially noisy sources (original query-item edges and item-item hyperedges). In this way, items on the tail are better connected due to the extra hyperedges, thereby enhancing their link prediction performance. We further integrate DCAH with self-supervised graph pre-training and/or DropEdge training, both of which effectively alleviate disassortative mixing. Extensive experiments on three proprietary E-Commerce datasets show that DCAH yields significant improvements of up to \textbf{24.6\% in mean reciprocal rank (MRR)} and \textbf{48.3\% in recall} compared to GNN-based baselines. Our source code is available at \url{https://github.com/amazon-science/dual-channel-hypergraph-neural-network}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源