论文标题

CPPF ++:不确定性感知SIM2REAL对象姿势姿势估算通过投票汇总

CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation

论文作者

You, Yang, He, Wenhao, Liu, Jin, Xiong, Hongkai, Wang, Weiming, Lu, Cewu

论文摘要

物体姿势估计构成3D视觉域内的关键区域。尽管利用现实世界姿势注释的当代最先进的方法表现出了值得称赞的绩效,但这种实际培训数据的采购却带来了巨大的成本。本文着重于一个特定的设置,其中仅将3D CAD模型用作先验知识,而没有任何背景或混乱信息。我们引入了一种新型方法CPPF ++,该方法旨在用于SIM到现实姿势估计。这种方法建立在CPPF的基本观点投票方案的基础上,并通过概率观点对其进行了重新制定。为了应对投票碰撞所带来的挑战,我们提出了一种新颖的方法,涉及通过估计规范空间内每个点对的概率分布来建模投票不确定性。此外,我们通过引入N点元素来增强每个投票单元提供的上下文信息。为了增强模型的鲁棒性和准确性,我们结合了几个创新的模块,包括嘈杂的对过滤,在线对齐优化和元组功能集合。除了这些方法上的进步外,我们还引入了一种新的类别姿势估计数据集,名为Diversepose300。经验证据表明,我们的方法显着超过了以前的SIM到现实方法,并在新型数据集中实现了可比性或优越的性能。我们的代码可在https://github.com/qq456cvb/cppf2上找到。

Object pose estimation constitutes a critical area within the domain of 3D vision. While contemporary state-of-the-art methods that leverage real-world pose annotations have demonstrated commendable performance, the procurement of such real training data incurs substantial costs. This paper focuses on a specific setting wherein only 3D CAD models are utilized as a priori knowledge, devoid of any background or clutter information. We introduce a novel method, CPPF++, designed for sim-to-real pose estimation. This method builds upon the foundational point-pair voting scheme of CPPF, reformulating it through a probabilistic view. To address the challenge posed by vote collision, we propose a novel approach that involves modeling the voting uncertainty by estimating the probabilistic distribution of each point pair within the canonical space. Furthermore, we augment the contextual information provided by each voting unit through the introduction of N-point tuples. To enhance the robustness and accuracy of the model, we incorporate several innovative modules, including noisy pair filtering, online alignment optimization, and a tuple feature ensemble. Alongside these methodological advancements, we introduce a new category-level pose estimation dataset, named DiversePose 300. Empirical evidence demonstrates that our method significantly surpasses previous sim-to-real approaches and achieves comparable or superior performance on novel datasets. Our code is available on https://github.com/qq456cvb/CPPF2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源