论文标题
快速而简单的$ o(z \ log n)$ - 空间索引,用于查找大约最长的常见子字符串
A fast and simple $O (z \log n)$-space index for finding approximately longest common substrings
论文作者
论文摘要
We describe how, given a text $T [1..n]$ and a positive constant $ε$, we can build a simple $O (z \log n)$-space index, where $z$ is the number of phrases in the LZ77 parse of $T$, such that later, given a pattern $P [1..m]$, in $O (m \log \log z + \mathrm{polylog} (m + z))$ time and有了很高的概率,我们可以找到$ p $的子字符串,其长度至少是$(1-ε)$的长度,占$ p $和$ t $的最长常见子字符串的长度。
We describe how, given a text $T [1..n]$ and a positive constant $ε$, we can build a simple $O (z \log n)$-space index, where $z$ is the number of phrases in the LZ77 parse of $T$, such that later, given a pattern $P [1..m]$, in $O (m \log \log z + \mathrm{polylog} (m + z))$ time and with high probability we can find a substring of $P$ that occurs in $T$ and whose length is at least a $(1 - ε)$-fraction of the length of a longest common substring of $P$ and $T$.