论文标题
降低核结构模型的歧管边界近似方法的稳定性
Stability of the manifold boundary approximation method for reductions of nuclear structure models
论文作者
论文摘要
核能密度功能的框架已被用来描述广泛的核的核结构现象。最近,给定核模型的统计特性(例如参数置信区间和相关性)受到了很多关注,尤其是当一个试图适合复杂模型时。我们应用信息理论方法来研究通过歧管边界近似方法(MBAM)降低模型降低的稳定性。在使用蒙特卡洛模拟的相对论能量密度功能的密度依赖性点耦合模型的说明性示例中,发现从MBAM程序获得的主要结论在模型参数的变化下是稳定的。此外,我们发现,当Fisher Information指标的决定因素消失时,大地测量的末端发生,从而有效地将参数空间分离为两个断开的区域。
The framework of nuclear energy density functionals has been employed to describe nuclear structure phenomena for a wide range of nuclei. Recently, statistical properties of a given nuclear model, such as parameter confidence intervals and correlations, have received much attention, particularly when one tries to fit complex models. We apply information-theoretic methods to investigate stability of model reductions by the manifold boundary approximation method (MBAM). In an illustrative example of the density-dependent point-coupling model of the relativistic energy density functional, utilizing Monte Carlo simulations, it is found that main conclusions obtained from the MBAM procedure are stable under variation of the model parameters. Furthermore, we find that the end of the geodesic occurs when the determinant of the Fisher information metric vanishes, thus effectively separating the parameter space into two disconnected regions.