论文标题

使用基于模型的重建来对控制器优化的软触角的本体感受感应

Proprioceptive Sensing of Soft Tentacles with Model Based Reconstruction for Controller Optimization

论文作者

Vicari, Andrea, Obayashi, Nana, Stella, Francesco, Raynaud, Gaetan, Mulleners, Karen, Della Santina, Cosimo, Hughes, Josie

论文摘要

软机器人在展示新兴行为方面的成功与与环境的符合互动密切相关。但是,为了利用这种现象,需要妨碍其柔软度的本体感受感应方法。在这项工作中,我们提出了一种基于嵌入式压力传感器的软水下细长结构的新传感方法,并使用基于学习的管道将传感器读数与软结构的形状联系起来。使用两种不同的建模技术,我们比较姿势重建精度并确定最佳方法。使用本体感受的感应功能,我们展示了如何使用此信息来评估多个指标的游泳性能,即游泳推力,尖端偏转和行驶波指数。最后,我们以最大的9.5 cm/s的速度证明了嵌入式传感器在自由游泳软机器人鱿鱼游泳上的鲁棒性,并且在误差范围内预测的绝对尖端挠度在误差小于9%的情况下,而无需外部传感器。

The success of soft robots in displaying emergent behaviors is tightly linked to the compliant interaction with the environment. However, to exploit such phenomena, proprioceptive sensing methods which do not hinder their softness are needed. In this work we propose a new sensing approach for soft underwater slender structures based on embedded pressure sensors and use a learning-based pipeline to link the sensor readings to the shape of the soft structure. Using two different modeling techniques, we compare the pose reconstruction accuracy and identify the optimal approach. Using the proprioceptive sensing capabilities we show how this information can be used to assess the swimming performance over a number of metrics, namely swimming thrust, tip deflection, and the traveling wave index. We conclude by demonstrating the robustness of the embedded sensor on a free swimming soft robotic squid swimming at a maximum velocity of 9.5 cm/s, with the absolute tip deflection being predicted within an error less than 9% without the aid of external sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源