论文标题
Covmos:一种新的蒙特卡罗来式星系聚类分析方法
COVMOS: a new Monte Carlo approach for galaxy clustering analysis
论文作者
论文摘要
我们验证了Baratta等人中引入的COVMOS方法。 (2019年)允许快速模拟不同宇宙轨迹示踪剂(例如暗物质颗粒,光晕,星系等)的目录。将基础示踪剂密度字段的功率谱和单点概率分布函数设置为方法的输入,并由用户任意选择。为了评估COVMOS的有效性域,在产生的两点统计协方差矩阵的级别上,我们选择针对这两个输入统计数量,从现实的$ n $ body模拟输出中。特别是,我们在$λ$ CDM和大型中微子宇宙学中执行此克隆过程,以[0,2] $中的$ z \范围内的五个红移。首先,我们验证输出实际空间的两点统计(包括配置和傅立叶空间)估计超过$ 5,000 $ $ covmos实现每个红移和每个宇宙学,$ 1 \ [\ mathrm {gpc}/h]^3 $和$ 10^8 $颗粒。对相应的$ n $体体测量进行了这种验证,该测量值是从50个模拟中估计的。我们发现该方法可在功率谱中有效期为$ k \ sim 0.2h/$ mpc,并降至$ r〜 \ sim 20 $ mpc $/h $用于相关功能。然后,我们通过提出对特殊速度分布的新建模来扩展该方法,旨在重现线性和轻度非线性方案中的红移空间变形。验证此处方后,我们最终比较并验证在相同范围的范围内生成的红移空间两点统计协方差矩阵。我们在公共存储库中发布与此方法相关的Python代码,从而允许在创纪录的时间内产生数以万计的实现。 Covmos旨在适用于参与大型Galaxy-Survey科学的任何用户,需要大量的模拟实现。
We validate the COVMOS method introduced in Baratta et al. (2019) allowing for the fast simulation of catalogues of different cosmological field tracers (e.g. dark matter particles, halos, galaxies, etc.). The power spectrum and one-point probability distribution function of the underlying tracer density field are set as inputs of the method and are arbitrarily chosen by the user. In order to evaluate the validity domain of COVMOS at the level of the produced two-point statistics covariance matrix, we choose to target these two input statistical quantities from realistic $N$-body simulation outputs. In particular, we perform this cloning procedure in a $Λ$CDM and in a massive neutrino cosmologies, for five redshifts in the range $z\in[0,2]$. First, we validate the output real-space two-point statistics (both in configuration and Fourier space) estimated over $5,000$ COVMOS realisations per redshift and per cosmology, with a volume of $1\ [\mathrm{Gpc}/h]^3$ and $10^8$ particles each. Such a validation is performed against the corresponding $N$-body measurements, estimated from 50 simulations. We find the method to be valid up to $k\sim 0.2h/$Mpc for the power spectrum and down to $r~\sim 20$ Mpc$/h$ for the correlation function. Then, we extend the method by proposing a new modelling of the peculiar velocity distribution, aiming at reproducing the redshift-space distortions both in the linear and mildly non-linear regimes. After validating this prescription, we finally compare and validate the produced redshift-space two-point statistics covariance matrices in the same range of scales. We release on a public repository the Python code associated with this method, allowing the production of tens of thousands of realisations in record time. COVMOS is intended for any user involved in large galaxy-survey science requiring a large number of mock realisations.