论文标题

网络结构下的横截面动力学:理论和宏观经济应用

Cross-Sectional Dynamics Under Network Structure: Theory and Macroeconomic Applications

论文作者

Mlikota, Marko

论文摘要

经济学上的许多环境都涉及双边纽带连接的单位。我开发了一个计量经济学框架,将横截面变量的动态合理化为沿固定双边链接的创新传输,并可以适应高阶网络效应如何随着时间的推移积累的丰富模式。所提出的网络视频(NVAR)可用于估计动态网络效应,并根据数据中的动态互相关给出或推断网络。在后一种情况下,由于网络可以通过相对较少的双侧链接来汇总变量(单位)之间复杂关系的能力,它还提供了一种对高维(横截面)过程进行建模的维度减少技术。在第一个应用程序中,我显示了RBC经济中的部门产出增长,其滞后输入输出转换在NVAR之后。我将冲动反应表征为TFP冲击,在这种环境下,我估计沿供应链的生产力冲击滞后的传播可以占总产量增长的持久性的三分之一。其余的是由于TFP过程中的持续存在,因此在部门TFP中持续存在可忽略的作用。在第二个应用程序中,i通过假设和估计动态基础的网络来预测整个经合组织国家的宏观经济汇总。与我提供的等效结果一致,相对于动态因子模型,这减少了样本外平方误差。降低量从季度实际GDP增长到-12%到每月CPI通货膨胀的-68%。

Many environments in economics involve units linked by bilateral ties. I develop an econometric framework that rationalizes the dynamics of cross-sectional variables as the innovation transmission along fixed bilateral links and that can accommodate rich patterns of how network effects of higher order accumulate over time. The proposed Network-VAR (NVAR) can be used to estimate dynamic network effects, with the network given or inferred from dynamic cross-correlations in the data. In the latter case, it also offers a dimensionality-reduction technique for modeling high-dimensional (cross-sectional) processes, owing to networks' ability to summarize complex relations among variables (units) by relatively few bilateral links. In a first application, I show that sectoral output growth in an RBC economy with lagged input-output conversion follows an NVAR. I characterize impulse-responses to TFP shocks in this environment, and I estimate that the lagged transmission of productivity shocks along supply chains can account for a third of the persistence in aggregate output growth. The remainder is due to persistence in the aggregate TFP process, leaving a negligible role for persistence in sectoral TFP. In a second application, I forecast macroeconomic aggregates across OECD countries by assuming and estimating a network that underlies the dynamics. In line with an equivalence result I provide, this reduces out-of-sample mean squared errors relative to a dynamic factor model. The reductions range from -12% for quarterly real GDP growth to -68% for monthly CPI inflation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源