论文标题

地壳磁场不会导致二进制中子恒星合并中大型磁场扩增

Crustal magnetic fields do not lead to large magnetic-field amplifications in binary neutron-star mergers

论文作者

Chabanov, Michail, Tootle, Samuel D., Most, Elias R., Rezzolla, Luciano

论文摘要

磁场的放大在解释与二进制中子星级合并相关的许多天体物理现象(例如质量喷射和短伽马射线爆发的动力)方面起着重要作用。通常认为孤立的中子恒星中的磁场局限于恒星表面附近的一个小区域,而通常将其填充数值模型中的整个恒星。通过执行高分辨率,全局和高阶的一般偏远化磁性水力动力模拟,我们研究了纯粹的地壳磁场的影响,并将其与由具有相同磁能的偶极磁场组成的标准配置对比,但填充了整个恒星。尽管外壳配置在开尔文 - 霍尔特兹(Kelvin-Helmholtz)稳定阶段产生强磁场非常有效,但它们无法实现全星配置的相同水平的磁场扩增。这是由于中子星际内部缺乏磁化材料,用于进一步的湍流扩增以及地壳配置中高度磁化物质的表面损失。因此,两种配置中的最终磁能差异多于一个数量级。我们简要讨论了这些结果对天体物理可观察物的影响,以及如何使用它们在合并二进制过程中推断出磁性拓扑。

The amplification of magnetic fields plays an important role in explaining numerous astrophysical phenomena associated with binary neutron-star mergers, such as mass ejection and the powering of short gamma-ray bursts. Magnetic fields in isolated neutron stars are often assumed to be confined to a small region near the stellar surface, while they are normally taken to fill the whole stars in the numerical modelling. By performing high-resolution, global, and high-order general-relativistic magnetohydrodynamic simulations we investigate the impact of a purely crustal magnetic field and contrast it with the standard configuration consisting of a dipolar magnetic field with the same magnetic energy but filling the whole star. While the crust-configurations are very effective in generating strong magnetic fields during the Kelvin-Helmholtz-instability stage, they fail to achieve the same level of magnetic-field amplification of the full-star configurations. This is due to the lack of magnetized material in the neutron-star interiors to be used for further turbulent amplification and to the surface losses of highly magnetized matter in the crust-configurations. Hence, the final magnetic energies in the two configurations differ by more than one order of magnitude. We briefly discuss the impact of these results on astrophysical observables and how they can be employed to deduce the magnetic topology in merging binaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源