论文标题

一类非Convex-Nonconcave minimax问题

Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems

论文作者

Xu, Zi, Wang, Zi-Qi, Wang, Jun-Lin, Dai, Yu-Hong

论文摘要

在本文中,我们考虑了一类非convex-nonconcave minimax问题,即NC-PL minimax问题,其目标函数满足了相对于内部变量的Polyak-łojasiewicz(PL)条件。我们提出了一个零阶交流梯度下降(ZO-AGDA)算法和一个零级方差降低,可在确定性和随机设置下分别解决NC-PL Minimax问题,以求解NC-PL Minimax问题的交替梯度下降(ZO-VRAGDA)算法。获得ZO-AGDA和ZO-VRAGDA算法的$ε$ - 定位点的功能值查询总数用于求解NC-PL minimax问题的上限是由$ \ Mathcal {O}(O}(O}(O}(\ varepsilon^{ - 2}}} { - 2}})$和$ \ MATHCAL CAL CAL CAL CALCAL {O}(\ VAREPSILON 分别。据我们所知,它们是前两个零件算法,具有迭代复杂性Gurantee用于解决NC-PL Minimax问题。

In this paper, we consider a class of nonconvex-nonconcave minimax problems, i.e., NC-PL minimax problems, whose objective functions satisfy the Polyak-Łojasiewicz (PL) condition with respect to the inner variable. We propose a zeroth-order alternating gradient descent ascent (ZO-AGDA) algorithm and a zeroth-order variance reduced alternating gradient descent ascent (ZO-VRAGDA) algorithm for solving NC-PL minimax problem under the deterministic and the stochastic setting, respectively. The total number of function value queries to obtain an $ε$-stationary point of ZO-AGDA and ZO-VRAGDA algorithm for solving NC-PL minimax problem is upper bounded by $\mathcal{O}(\varepsilon^{-2})$ and $\mathcal{O}(\varepsilon^{-3})$, respectively. To the best of our knowledge, they are the first two zeroth-order algorithms with the iteration complexity gurantee for solving NC-PL minimax problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源