论文标题
用于AB-Initio量子化学的自我注意力ANSATZ
A Self-Attention Ansatz for Ab-initio Quantum Chemistry
论文作者
论文摘要
我们使用自我注意力,波函数变压器(psiformer)提出了一种新型的神经网络结构,可用作近似(或ANSATZ)来求解多电子Schrödinger方程,即用于量子化学和材料科学的基本方程。该方程式可以从第一个原理解决,不需要外部培训数据。近年来,诸如Ferminet和Paulinet之类的深神经网络已被用来显着提高这些第一原则计算的准确性,但是它们缺乏电子之间的类似注意力的机制来进行电子之间的相互作用。在这里,我们表明,psiformer可以用作这些其他神经网络的倒入替换,通常会显着提高计算的准确性。尤其是在较大的分子上,几十个kcal/mol可以改善基态能,这是一种定性的飞跃,而不是以前的方法。这表明自我发项网络可以学习电子之间的复杂量子机械相关性,并且是在较大系统上获得前所未有的准确性的有前途的途径。
We present a novel neural network architecture using self-attention, the Wavefunction Transformer (Psiformer), which can be used as an approximation (or Ansatz) for solving the many-electron Schrödinger equation, the fundamental equation for quantum chemistry and material science. This equation can be solved from first principles, requiring no external training data. In recent years, deep neural networks like the FermiNet and PauliNet have been used to significantly improve the accuracy of these first-principle calculations, but they lack an attention-like mechanism for gating interactions between electrons. Here we show that the Psiformer can be used as a drop-in replacement for these other neural networks, often dramatically improving the accuracy of the calculations. On larger molecules especially, the ground state energy can be improved by dozens of kcal/mol, a qualitative leap over previous methods. This demonstrates that self-attention networks can learn complex quantum mechanical correlations between electrons, and are a promising route to reaching unprecedented accuracy in chemical calculations on larger systems.