论文标题
casfusionnet:一个级联的网络,用于点云语义场景完成,密集特征融合
CasFusionNet: A Cascaded Network for Point Cloud Semantic Scene Completion by Dense Feature Fusion
论文作者
论文摘要
语义场景完成(SSC)旨在完成部分3D场景,并同时预测其语义。大多数现有的作品都采用体素表示,因此随着体素分辨率的增加,内存和计算成本的增长。尽管一些作品试图从3D点云的角度来解决SSC,但它们尚未完全利用场景完成和语义分段的两个任务之间的相关性和互补性。在我们的工作中,我们提出了CasfusionNet,这是一个新颖的级联网络,可通过密集的功能融合来完成点云语义场景的完成。具体而言,我们设计(i)一个全局完成模块(GCM),以产生重新采样,完成但粗点集,(ii)语义分段模块(SSM),以预测GCM生成的已完成点的每点语义标签,以及(iii)本地改进模块(LRM),以进一步改进了与本地的persiver persivers coptine coptine coptine coptine coptine coptine and Ipples a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a和a。我们通过每个级别的密集特征融合来组织上述三个模块,并级联四个级别,在该级别中,我们还在每个级别之间使用特征融合,以提供足够的信息使用。与最先进的方法相比,我们编制的两个基于点的数据集中的定量和定性结果验证了我们的CasfusionNet的有效性和优势,从场景完成和语义分段方面。这些代码和数据集可在以下网址提供:https://github.com/jinfengx/casfusionnet。
Semantic scene completion (SSC) aims to complete a partial 3D scene and predict its semantics simultaneously. Most existing works adopt the voxel representations, thus suffering from the growth of memory and computation cost as the voxel resolution increases. Though a few works attempt to solve SSC from the perspective of 3D point clouds, they have not fully exploited the correlation and complementarity between the two tasks of scene completion and semantic segmentation. In our work, we present CasFusionNet, a novel cascaded network for point cloud semantic scene completion by dense feature fusion. Specifically, we design (i) a global completion module (GCM) to produce an upsampled and completed but coarse point set, (ii) a semantic segmentation module (SSM) to predict the per-point semantic labels of the completed points generated by GCM, and (iii) a local refinement module (LRM) to further refine the coarse completed points and the associated labels from a local perspective. We organize the above three modules via dense feature fusion in each level, and cascade a total of four levels, where we also employ feature fusion between each level for sufficient information usage. Both quantitative and qualitative results on our compiled two point-based datasets validate the effectiveness and superiority of our CasFusionNet compared to state-of-the-art methods in terms of both scene completion and semantic segmentation. The codes and datasets are available at: https://github.com/JinfengX/CasFusionNet.