论文标题
在边缘计算环境中自适应监视的概率时间序列预测
Probabilistic Time Series Forecasting for Adaptive Monitoring in Edge Computing Environments
论文作者
论文摘要
随着越来越多的计算被转移到网络的边缘,由于典型的资源受限的环境,对关键基础架构(例如自主驾驶中的中间处理节点)进行监视更加复杂。为了减少通过监视施加的网络链接上的资源开销,已经讨论过各种方法,即遵循用于数据发射设备的过滤方法,或者基于使用的预测模型进行动态采样。尽管如此,现有方法主要需要在边缘设备上进行自适应监视,这需要设备重新配置,利用其他资源,并限制了使用的模型的复杂性。 在本文中,我们提出了一种基于抽样和云的方法,该方法内部利用了概率的预测,因此提供了量化模型不确定性的方法,该方法可用于对采样频率的上下文化适应,从而缓解了受限的网络资源。我们评估了在公开流媒体数据集上监视管道的原型实现,并在方法比较中证明了其对资源效率的积极影响。
With increasingly more computation being shifted to the edge of the network, monitoring of critical infrastructures, such as intermediate processing nodes in autonomous driving, is further complicated due to the typically resource-constrained environments. In order to reduce the resource overhead on the network link imposed by monitoring, various methods have been discussed that either follow a filtering approach for data-emitting devices or conduct dynamic sampling based on employed prediction models. Still, existing methods are mainly requiring adaptive monitoring on edge devices, which demands device reconfigurations, utilizes additional resources, and limits the sophistication of employed models. In this paper, we propose a sampling-based and cloud-located approach that internally utilizes probabilistic forecasts and hence provides means of quantifying model uncertainties, which can be used for contextualized adaptations of sampling frequencies and consequently relieves constrained network resources. We evaluate our prototype implementation for the monitoring pipeline on a publicly available streaming dataset and demonstrate its positive impact on resource efficiency in a method comparison.