论文标题

基于漂移的石墨烯双曲纳米结构中的巨型和宽带THZ以及IR排放

Giant and Broadband THz and IR Emission in Drift-biased Graphene-Based Hyperbolic Nanostructures

论文作者

Wang, L., Paul, N. K., Hihath, J., Gomez-Diaz, J. S.

论文摘要

我们证明,Cherenkov辐射可以通过同时控制漂移电子的特性和周围介质支持的光子状态来操纵频率,带宽和效率。我们在分析上表明,从大小,频率分散及其变化与漂流载体的特性方面,辐射速率在很大程度上取决于激发光子状态的动量。通过操纵和增强基于石墨烯的纳米结构中的旋转电子和工程双曲线模式之间的耦合,将这种方法用于设计并实现微型,宽带,可调和有效的Terahertz和远红外源。双曲线模式的宽带,分散和限制性质放松动量匹配问题,避免使用电子束并大大提高辐射速率 - 使超过90%的漂流电子发射光子超过90%。我们的发现为开发固态Terahertz和红外资源开发了新的范式。

We demonstrate that Cherenkov radiation can be manipulated in terms of operation frequency, bandwidth, and efficiency by simultaneously controlling the properties of drifting electrons and the photonic states supported by their surrounding media. We analytically show that the radiation rate strongly depends on the momentum of the excited photonic state, in terms of magnitude, frequency dispersion, and its variation versus the properties of the drifting carriers. This approach is applied to design and realize miniaturized, broadband, tunable, and efficient terahertz and far-infrared sources by manipulating and boosting the coupling between drifting electrons and engineered hyperbolic modes in graphene-based nanostructures. The broadband, dispersive, and confined nature of hyperbolic modes relax momentum matching issues, avoid using electron beams, and drastically enhance the radiation rate - allowing that over 90% of drifting electrons emit photons. Our findings open a new paradigm for the development of solid-state terahertz and infrared sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源