论文标题
涉及随机跳跃玻色 - 哈伯型模型中玻璃和超流体订单的重新进入相变
Reentrant phase transitions involving glassy and superfluid orders in the random hopping Bose-Hubbard model
论文作者
论文摘要
我们研究了与非对抗疾病(即动能中随机性)的密切相关玻色子的系统,并找到了一个作为现场相互作用的函数发生的恢复相变的家族。我们使用范式的bose-Hubbard Hamiltonian使用随机跳跃的术语对系统进行建模,并采用了从量子旋转镜头已知的复制技巧和Trotter-Suzuki膨胀来解决该系统。从随后的数值计算中,我们发现发生了三个不同的相边界,在其中发生了重点转变:玻璃和无序相之间,超级玻璃和超级流体之间以及超流体和无序相之间。这三个发生在相应的非交互系统的临界温度略高于略高于临界温度的温度下。当出现和消失的顺序是玻璃的时,这对应于热能的相互作用和跳跃的传播。当涉及超流量时,热波动必须稍微克服平均跳跃,依次将其重新进入。
We study a system of strongly correlated bosons with off-diagonal disorder, i.e., randomness in the kinetic energy, and find a family of reentrant phase transitions that occur as a function of the on-site interaction. We model the system using the paradigmatic Bose-Hubbard Hamiltonian with a random hopping term and solve it employing the replica trick and Trotter-Suzuki expansion known from quantum spin-glasses. From subsequent numerical calculations, we find three distinct phase boundaries at which the reentrant transitions occur: between glass and disordered phase, between superglass and superfluid ones, and between superfluid and disordered phases. All three happen at temperatures slightly above critical temperatures of corresponding non-interacting systems. When the emerging and disappearing order is glassy, this corresponds to the interplay of the thermal energy and the spread of hoppings. When superfluidity is involved, thermal fluctuations must slightly overcome the mean hopping in turn for the reentrance to occur.