论文标题
FAR3DET:朝远场3D检测
Far3Det: Towards Far-Field 3D Detection
论文作者
论文摘要
我们专注于远场3D检测(FAR3DET)的任务,即与观察者一定距离(例如$> 5000万美元)的一定距离。 FAR3DET对于以高速公路速度运行的自动驾驶汽车(AV)尤其重要,这需要探测远场障碍物以确保足够的制动距离。但是,当代的AV基准(例如Nuscenes)低估了此问题,因为它们仅评估性能直至一定距离(50m)。原因之一是很难获得远场3D注释,尤其是对于激光雷达传感器而言,对于遥远的物体而言产生很少的分数。确实,我们发现近50%的远场对象(超过50m)包含零激光点。其次,当前3D检测的指标采用了“一定大小的”哲学,使用相同的容忍度阈值近对象,与人类视力和立体声差异的公差不一致。这两个因素都导致对FAR3DET任务的不完整分析。例如,尽管传统的智慧告诉我们,高分辨率RGB传感器对于3D检测远距离对象至关重要,但与当前基准标题板上的RGB对应物相比,基于激光雷达的方法仍然排名更高。作为迈向FAR3DET基准测试的第一步,我们开发了一种方法,可以从Nuscenes数据集中找到良好的场景,并得出一个良好的远场验证集。我们还提出了一个FAR3DET评估协议,并探索了FAR3DET的各种3D检测方法。我们的结果令人信服地证明了长期以来的传统观念,即高分辨率RGB改善了远场的3D检测。我们进一步提出了一种简单而有效的方法,该方法基于非最大抑制作用,从RGB和LIDAR探测器中融合了检测,该方法的表现非常优于远场中最先进的3D检测器。
We focus on the task of far-field 3D detection (Far3Det) of objects beyond a certain distance from an observer, e.g., $>$50m. Far3Det is particularly important for autonomous vehicles (AVs) operating at highway speeds, which require detections of far-field obstacles to ensure sufficient braking distances. However, contemporary AV benchmarks such as nuScenes underemphasize this problem because they evaluate performance only up to a certain distance (50m). One reason is that obtaining far-field 3D annotations is difficult, particularly for lidar sensors that produce very few point returns for far-away objects. Indeed, we find that almost 50% of far-field objects (beyond 50m) contain zero lidar points. Secondly, current metrics for 3D detection employ a "one-size-fits-all" philosophy, using the same tolerance thresholds for near and far objects, inconsistent with tolerances for both human vision and stereo disparities. Both factors lead to an incomplete analysis of the Far3Det task. For example, while conventional wisdom tells us that high-resolution RGB sensors should be vital for 3D detection of far-away objects, lidar-based methods still rank higher compared to RGB counterparts on the current benchmark leaderboards. As a first step towards a Far3Det benchmark, we develop a method to find well-annotated scenes from the nuScenes dataset and derive a well-annotated far-field validation set. We also propose a Far3Det evaluation protocol and explore various 3D detection methods for Far3Det. Our result convincingly justifies the long-held conventional wisdom that high-resolution RGB improves 3D detection in the far-field. We further propose a simple yet effective method that fuses detections from RGB and lidar detectors based on non-maximum suppression, which remarkably outperforms state-of-the-art 3D detectors in the far-field.