论文标题

在非标准条件下,准最大最大似然估计和受惩罚估算

Quasi-maximum likelihood estimation and penalized estimation under non-standard conditions

论文作者

Yoshida, Junichiro, Yoshida, Nakahiro

论文摘要

本文的目的是开发一个通用的参数估计理论,该理论允许在非规范模型中推导估计器的极限分布,其中真实参数值可能位于参数空间的边界上,甚至可以识别可识别性失败。为此,我们提出了比以前的研究更笼统的参数空间局部近似值(以真实值为单位)。该估计理论是全面的,因为它可以处理此类非规范模型下的惩罚估计以及准最大的可能性估计。此外,我们的结果可以适用于所谓的非共性统计数据,其中Fisher信息是随机的,包括定期实验,该实验是局部渐近混合正常的。在受惩罚的估计中,取决于边界约束,即使是$ q <1 $的桥梁估计器也不一定会提供选择一致性。因此,描述了一些足够的选择一致性条件,精确地评估了边界约束和惩罚形式之间的平衡。本文处理的示例是:(i)对广义反向高斯分布的估计,(ii)非凝学ITô的扩散参数的准估计值,其参数空间由阳性半定义对称矩阵组成,而随机效应的效果均为差异,而将漂移参数视为nuiagience commention commentive commentive commention commention commention commentive ml估计的效果。

The purpose of this article is to develop a general parametric estimation theory that allows the derivation of the limit distribution of estimators in non-regular models where the true parameter value may lie on the boundary of the parameter space or where even identifiability fails. For that, we propose a more general local approximation of the parameter space (at the true value) than previous studies. This estimation theory is comprehensive in that it can handle penalized estimation as well as quasi-maximum likelihood estimation under such non-regular models. Besides, our results can apply to the so-called non-ergodic statistics, where the Fisher information is random in the limit, including the regular experiment that is locally asymptotically mixed normal. In penalized estimation, depending on the boundary constraint, even the Bridge estimator with $q<1$ does not necessarily give selection consistency. Therefore, some sufficient condition for selection consistency is described, precisely evaluating the balance between the boundary constraint and the form of the penalty. Examples handled in the paper are: (i) ML estimation of the generalized inverse Gaussian distribution, (ii) quasi-ML estimation of the diffusion parameter in a non-ergodic Itô process whose parameter space consists of positive semi-definite symmetric matrices, while the drift parameter is treated as nuisance and (iii) penalized ML estimation of variance components of random effects in linear mixed models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源