论文标题

部分可观测时空混沌系统的无模型预测

On the conical zeta values and the Dedekind zeta values for totally real fields

论文作者

Bekki, Hohto

论文摘要

锥体Zeta值是多个Zeta值的概括,这些Zeta值由凸锥上的某些多个总和定义。在本文中,我们介绍了完全真实场的Dedekind Zeta函数的值与某些代数锥的圆锥Zeta值之间的关系。更准确地说,我们表明,完全真实场的部分Zeta函数的值可以表示为与某些代数锥相关的锥体Zeta值的有理线性组合,直到判别剂的平方根。

The conical zeta values are a generalization of the multiple zeta values which are defined by certain multiple sums over convex cones. In this paper, we present a relation between the values of the Dedekind zeta functions for totally real fields and the conical zeta values for certain algebraic cones. More precisely, we show that the values of the partial zeta functions for totally real fields can be expressed as a rational linear combination of the conical zeta values associated with certain algebraic cones up to the square root of the discriminant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源