论文标题
使用单调+偏斜分裂的电路分析
Circuit Analysis using Monotone+Skew Splitting
论文作者
论文摘要
结果表明,最大单调元件的$ M $端口电路的行为可以表示为包含电路元件的最大单调算子的总和的零,以及代表互连结构的结构化偏压对称线性算子,以及线性输出转换。 Condat-Vũ算法解决了这种形式的包含问题,并可以使用周期性轨迹的迭代在每个端口进行周期性激发来解决周期性的稳态行为。
It is shown that the behavior of an $m$-port circuit of maximal monotone elements can be expressed as a zero of the sum of a maximal monotone operator containing the circuit elements, and a structured skew-symmetric linear operator representing the interconnection structure, together with a linear output transformation. The Condat-Vũ algorithm solves inclusion problems of this form, and may be used to solve for the periodic steady-state behavior, given a periodic excitation at each port, using an iteration in the space of periodic trajectories.