论文标题
最小的遗憾状态估计时间变化系统
Minimal regret state estimation of time-varying systems
论文作者
论文摘要
Kalman和H-Infinity过滤器是线性状态估计的最流行的范例,是针对非常具体的噪声和干扰模式而设计的,这可能不会在实践中出现。基于最小化遗憾措施的国家观察者是一种有希望的选择,因为他们旨在适应估计误差中的可识别模式。在本文中,我们表明,有限地平线估计的遗憾最小化问题可以将其置于简单的凸优化问题中。为此,我们首先使用新型的系统级综合参数化来重写线性时变系统动力学,以处理状态估计,能够处理干扰和测量噪声。然后,我们为基于半准编程的最小化遗憾提供了可拖动的公式。这两种贡献使得在实践中可以轻松实现最小的遗憾观察者设计。最后,数值实验表明,计算出的观察者可以显着胜过H-2和H--荷兰过滤器。
Kalman and H-infinity filters, the most popular paradigms for linear state estimation, are designed for very specific specific noise and disturbance patterns, which may not appear in practice. State observers based on the minimization of regret measures are a promising alternative, as they aim to adapt to recognizable patterns in the estimation error. In this paper, we show that the regret minimization problem for finite horizon estimation can be cast into a simple convex optimization problem. For this purpose, we first rewrite linear time-varying system dynamics using a novel system level synthesis parametrization for state estimation, capable of handling both disturbance and measurement noise. We then provide a tractable formulation for the minimization of regret based on semi-definite programming. Both contributions make the minimal regret observer design easily implementable in practice. Finally, numerical experiments show that the computed observer can significantly outperform both H-2 and H-infinity filters.