论文标题
公制度量空间上的Hardy不平等,III:案例$ Q \ leq P <0 $和申请
Hardy inequalities on metric measure spaces, III: The case $q\leq p<0$ and applications
论文作者
论文摘要
在本文中,我们获得了带有两个负指数的度量测量空间上的积分不等式的反向版本。此外,对于应用,我们显示了反向硬木木 - 贝伯夫和斯坦·韦斯的不平等现象,在同质谎言组上具有两个负数指数,并具有任意的准标准,结果似乎已经在欧几里得空间中是新的。这项工作进一步补充了$ p $和$ q $的范围(即$ q \ leq p <0 $),在\ cite {rv}和\ cite {rv21}中分别处理了$ 1 <p \ leq q <\ iffty $和$ p> q $。
In this paper, we obtain a reverse version of the integral Hardy inequality on metric measure space with two negative exponents. Also, as for applications we show the reverse Hardy-Littlewood-Sobolev and the Stein-Weiss inequalities with two negative exponents on homogeneous Lie groups and with arbitrary quasi-norm, the result which appears to be new already in the Euclidean space. This work further complements the ranges of $p$ and $q$ (namely, $q\leq p<0$) considered in \cite{RV} and \cite{RV21}, where one treated the cases $1<p\leq q<\infty$ and $p>q$, respectively.