论文标题
导电溶液中的磁和电力杂交微型电机:协同推进效应以及无标签的货物传输和感应
A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing
论文作者
论文摘要
电力微型和纳米运动是用于体外单细胞分析的有前途的工具。特别是,可以使用外部施加的电场将单细胞被Janus粒子(JP)捕获,运输和电穿孔。然而,尽管可以在高溶剂电导率下实现基于介电的(DEP)的货物操纵,但在超过0.3ms/cm的溶液电导率下,这些微动物的电推进却无效。在这里,我们通过将基于磁场的微型动力推进和导航与基于DEP的各种合成和生物学货物的操纵相结合,成功地将JP货物操纵和运输能力扩展到了接近物理学(<6ms/cm)溶液的导电能力。旋转磁场和电场的组合可通过调整电场频率来增强微电动机的迁移率和转向控制。条件是必要的。此外,我们证明了根据其介电型差异鉴定可行和坏死细胞之间凋亡细胞的微动物能力,因此,可以分析单个细胞样品中的凋亡状态,以进行药物发现,细胞疗法和免疫疗法。我们还证明了将活细胞捕获和将活细胞运送到含有阿霉素脂质体的区域的能力。这种用于无标记的诱捕,传输和感测在导电溶液中的混合微型运动方法,为药物输送和单细胞分析开辟了新的机会,其中近乎生理的介质
Electrically powered micro- and nanomotors are promising tools for in-vitro single-cell analysis. In particular, single cells can be trapped, transported and electroporated by a Janus particle (JP) using an externally applied electric field. However, while dielectrophoretic (DEP)-based cargo manipulation can be achieved at high-solution conductivity, electrical propulsion of these micromotors becomes ineffective at solution conductivities exceeding 0.3mS/cm. Here, we successfully extended JP cargo manipulation and transport capabilities to conductive near-physiological (<6mS/cm) solutions by combining magnetic field-based micromotor propulsion and navigation with DEP-based manipulation of various synthetic and biological cargos. Combination of a rotating magnetic field and electric field resulted in enhanced micromotor mobility and steering control through tuning of the electric field frequency. conditions are necessary. In addition, we demonstrated the micromotors ability of identifying apoptotic cell among viable and necrotic cells based their dielectrophoretic difference, thus, enabling to analyze the apoptotic status in the single cell samples for drug discovery, cell therapeutics and immunotherapy. We also demonstrated the ability to trap and transport live cells towards regions containing doxorubicin-loaded liposomes. This hybrid micromotor approach for label-free trapping, transporting and sensing of selected cells within conductive solutions, opens new opportunities in drug delivery and single cell analysis, where close-to-physiological media