论文标题

使用智能抽样和双重损失检测CSP植物中的吸收管损坏

Detecting broken Absorber Tubes in CSP plants using intelligent sampling and dual loss

论文作者

Pérez-Cutiño, Miguel Angel, Valverde, Juan Sebastián, Díaz-Báñez, José Miguel

论文摘要

浓缩太阳能(CSP)是一种不断发展的技术,它导致从化石燃料变为可再生能源的过程。系统的复杂性和大小需要增加维护任务,以确保可靠性,可用性,可维护性和安全性。当前,使用抛物线槽收集器系统在CSP植物中的自动故障检测证明了两个主要缺点:1)需要在接收器管附近手动放置使用的设备,2)未在真实植物中测试基于机器的溶液。我们通过将提取的数据与使用无人驾驶飞机的使用以及放置在7种实际植物中的传感器提供的数据相结合来解决这两个差距。最终的数据集是这种类型的第一个数据集,可以帮助标准化研究活动,以解决此类工厂中故障检测的问题。我们的工作提出了监督的机器学习算法,用于检测CSP植物中吸收管的破裂。提出的解决方案考虑了类不平衡问题,从而提高了少数族裔类算法的准确性,而不会损害模型的整体性能。对于深层剩余网络,我们同时解决了一个不平衡和平衡问题,这将增加了5%的少数民族班级,对F1得分没有损害。此外,采样技术下的随机随机增强了传统机器学习模型的性能,是F1评分中最高增长(3%)的直方图提升分类器算法。据我们所知,本文是首次使用运营工厂的数据为该问题提供自动解决方案。

Concentrated solar power (CSP) is one of the growing technologies that is leading the process of changing from fossil fuels to renewable energies. The sophistication and size of the systems require an increase in maintenance tasks to ensure reliability, availability, maintainability and safety. Currently, automatic fault detection in CSP plants using Parabolic Trough Collector systems evidences two main drawbacks: 1) the devices in use needs to be manually placed near the receiver tube, 2) the Machine Learning-based solutions are not tested in real plants. We address both gaps by combining the data extracted with the use of an Unmaned Aerial Vehicle, and the data provided by sensors placed within 7 real plants. The resulting dataset is the first one of this type and can help to standardize research activities for the problem of fault detection in this type of plants. Our work proposes supervised machine-learning algorithms for detecting broken envelopes of the absorber tubes in CSP plants. The proposed solution takes the class imbalance problem into account, boosting the accuracy of the algorithms for the minority class without harming the overall performance of the models. For a Deep Residual Network, we solve an imbalance and a balance problem at the same time, which increases by 5% the Recall of the minority class with no harm to the F1-score. Additionally, the Random Under Sampling technique boost the performance of traditional Machine Learning models, being the Histogram Gradient Boost Classifier the algorithm with the highest increase (3%) in the F1-Score. To the best of our knowledge, this paper is the first providing an automated solution to this problem using data from operating plants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源