论文标题

从形式平滑到几何平滑

From formal smoothings to geometric smoothings

论文作者

Nobile, Alessandro

论文摘要

令X为代数封闭的场上的投影,等二维的单数方案。然后,存在几何平滑的存在(即X在平滑的基本曲线上的变形家族,其通用纤维是光滑的)意味着存在Tziolas定义的形式平滑。在本文中,我们解决了相反的问题,给出了X上足够的条件,以保证相反的问题,即形式的平稳性意味着几何平稳性。鉴于Tziolas的结果给出了足够的标准,这对形式平滑的存在很有用。

Let X be a projective, equidimensional, singular scheme over an algebraically closed field. Then the existence of a geometric smoothing (i.e. a family of deformations of X over a smooth base curve whose generic fibre is smooth) implies the existence of a formal smoothing as defined by Tziolas. In this paper we address the reverse question giving sufficient conditions on X that guarantee the converse, i.e. formal smoothability implies geometric smoothability. This is useful in light of Tziolas' results giving sufficient criteria for the existence of formal smoothings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源