论文标题

间隔审查的变压器鹰队:使用社会系统的反应检测信息操作

Interval-censored Transformer Hawkes: Detecting Information Operations using the Reaction of Social Systems

论文作者

Kong, Quyu, Calderon, Pio, Ram, Rohit, Boichak, Olga, Rizoiu, Marian-Andrei

论文摘要

社交媒体越来越多地被国有支持的参与者武器,以引起反应,推动叙事和震撼公众舆论。这些被称为信息操作(IO)。 IO的秘密性使它们的检测变得困难。由于用户以及内容删除和隐私要求,由于缺少数据而进一步扩大了这一点。这项工作提出了这样的假设,即信息操作试图在目标社会系统内引起的反应可用于检测它们。我们提出了一个间隔审查的变压器鹰队(IC-TH)体系结构和一个新颖的数据编码方案,以说明观察到的数据和缺失数据。我们得出了一种新型的对数类样函数,并与对比度学习过程一起部署。我们在三个现实世界Twitter数据集和两个学习任务上展示了IC-Th的性能:未来的普及性预测和项目类别预测。后者特别重要。仅使用转发时间和模式,我们可以预测YouTube视频的类别,猜猜新闻发布者是知名还是有争议的,最重要的是,确定了国家支持的IO代理商帐户。进一步的定性调查发现,自动发现的俄罗斯支持代理的簇似乎是协调其行为的,同时激活了以推动特定的叙述。

Social media is being increasingly weaponized by state-backed actors to elicit reactions, push narratives and sway public opinion. These are known as Information Operations (IO). The covert nature of IO makes their detection difficult. This is further amplified by missing data due to the user and content removal and privacy requirements. This work advances the hypothesis that the very reactions that Information Operations seek to elicit within the target social systems can be used to detect them. We propose an Interval-censored Transformer Hawkes (IC-TH) architecture and a novel data encoding scheme to account for both observed and missing data. We derive a novel log-likelihood function that we deploy together with a contrastive learning procedure. We showcase the performance of IC-TH on three real-world Twitter datasets and two learning tasks: future popularity prediction and item category prediction. The latter is particularly significant. Using the retweeting timing and patterns solely, we can predict the category of YouTube videos, guess whether news publishers are reputable or controversial and, most importantly, identify state-backed IO agent accounts. Additional qualitative investigations uncover that the automatically discovered clusters of Russian-backed agents appear to coordinate their behavior, activating simultaneously to push specific narratives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源