论文标题
Gelfand-Macpherson Quiver Moduli的通信
A Gelfand-MacPherson correspondence for quiver moduli
论文作者
论文摘要
我们表明,可以通过还原组的两个GIT商来识别出一个环形颤动的半稳定模量空间。一个投影代表的箭袋格拉曼尼亚人之一,另一个是注射式代表的格拉曼尼亚人。这是特殊情况的恢复,如经典的Gelfand-Macpherson对应关系及其对双分式颤动的概括,以及Zelevinsky Map,Zelevinsky Map以线性方向为dynkin型A Quiver。
We show that a semi-stable moduli space of representations of an acyclic quiver can be identified with two GIT quotients by reductive groups. One of a quiver Grassmannian of a projective representation, the other of a quiver Grassmannian of an injective representation. This recovers as special cases the classical Gelfand-MacPherson correspondence and its generalization by Hu and Kim to bipartite quivers, as well as the Zelevinsky map for a quiver of Dynkin type A with the linear orientation.