论文标题
准晶体温度和致密的Fermi-Bragg弧
Quasicrystalline Weyl points and dense Fermi-Bragg arcs
论文作者
论文摘要
我们引入了一种在2D准晶体中获取Weyl点的一般机制,可以将其扩展到任何堆叠层的堆栈。我们这样做是通过用垂直晶体摩托明作为调谐参数来驱动拓扑相变的,从而导致在临界点采购浆果曲率处的差距闭合。为了说明,我们使用了在penrose准晶体上定义的Qi-wu-zhang模型的简单3D概括。 Weyl点的存在是通过局部Chern标记,预测的带结构和状态密度建立的。有趣的是,我们在准晶体环境中揭示了费米弧的类似物,我们认为这是Fermi-bragg弧,密集分布的线条连接带脱胶的线并由Bragg峰索引。还讨论了此类表面状态在量子振荡中的特征和完全准晶Weyl系统的前景。我们的提案的灵活性为实现基质系统中实现其他无间隙拓扑阶段的新机会铺平了道路,为拓扑结构理论的作用显着扩展。
We introduce a general mechanism for obtaining Weyl points in a stack of 2D quasicrystals, which can be extended to any stack of aperiodic layers. We do so by driving a topological phase transition with the vertical crystal-momentum as the tuning parameter, which leads to gap closures at the critical points sourcing Berry curvature. To illustrate, we use a simple 3D generalization of the Qi-Wu-Zhang model defined on a Penrose quasicrystal. The presence of Weyl points is established via the local Chern marker, projected band structure and density of states. Interestingly, we uncover an analogue of Fermi arcs in the quasicrystalline setting, which we deem Fermi-Bragg arcs, densely distributed lines connecting the band degeneracies and indexed by the Bragg peaks. Signatures of such surface states in quantum oscillations and the prospect of a fully quasicrystalline Weyl system are also discussed. The flexibility of our proposal brings new opportunities for realizing other gapless topological phases in aperiodic systems, paving the way for a significantly expanded role for topological band theory.