论文标题

Maeay:Mae很少,零拍摄异常检测

MAEDAY: MAE for few and zero shot AnomalY-Detection

论文作者

Schwartz, Eli, Arbelle, Assaf, Karlinsky, Leonid, Harary, Sivan, Scheidegger, Florian, Doveh, Sivan, Giryes, Raja

论文摘要

我们建议使用蒙版自动编码器(MAE),这是一种在图像插入的自动训练的变压器模型,以进行异常检测(AD)。假设与正常区域相比,异常区域更难重建。 MAEDAY是第一个基于图像重建的异常检测方法,该方法利用了预训练的模型,可用于几次射击异常检测(FSAD)。我们还显示出相同的方法在没有正常样品的情况下,对于零击AD(ZSAD)和零摄像的异物检测(ZSFOD)的新任务非常出色。代码可在https://github.com/elischwartz/maeday上找到。

We propose using Masked Auto-Encoder (MAE), a transformer model self-supervisedly trained on image inpainting, for anomaly detection (AD). Assuming anomalous regions are harder to reconstruct compared with normal regions. MAEDAY is the first image-reconstruction-based anomaly detection method that utilizes a pre-trained model, enabling its use for Few-Shot Anomaly Detection (FSAD). We also show the same method works surprisingly well for the novel tasks of Zero-Shot AD (ZSAD) and Zero-Shot Foreign Object Detection (ZSFOD), where no normal samples are available. Code is available at https://github.com/EliSchwartz/MAEDAY .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源