论文标题

PICO空间任务的原始引力波的前景分离和约束

Foreground Separation and Constraints on Primordial Gravitational Waves with the PICO Space Mission

论文作者

Aurlien, Ragnhild, Remazeilles, Mathieu, Belkner, Sebastian, Carron, Julien, Delabrouille, Jacques, Eriksen, Hans Kristian, Flauger, Raphael, Fuskeland, Unni, Galloway, Mathew, Gorski, Krzysztof M., Hanany, Shaul, Hensley, Brandon S., Hill, J. Colin, Lawrence, Charles R., van Engelen, Alexander, Wehus, Ingunn Kathrine

论文摘要

PICO是NASA探针尺度任务的一个概念,旨在检测或限制张量与标量比$ r $,该参数量化了通货膨胀重力波的幅度。我们在具有五个前景模型的模拟上进行基于地图的组件分离,并输入$ r $ $ r_ {in} = 0 $和$ r_ {in} = 0.003 $。我们使用高斯可能性预测$ r $的确定,假设没有删除或残留的镜头因子$ a _ {\ rm镜头} $ = 27%。通过实施第一个全套的,后的组件分离,地图域删除,我们表明PICO应该能够实现$ a _ {\ rm Lens} $ = 22% - 24%。对于五个前景模型中的四个,我们发现PICO将能够设置约束$ r <1.3 \ times 10^{ - 4} \,\,\,\,\ mbox {to} \,\,\,r <2.7 \ times 10^{ - 4} { - 4} \,(95 \%),(95 \%\%)$ r_ in} = 0 $ r_ {对于这些型号,$ r = 0.003 $以置信度水平在$18σ$和27σ$之间回收。我们发现较低的低频或高频带时,我们发现上限较弱,并且在某些情况下会显着偏见。当$ r_ {in} = 0 $和$ r_ {in} = 0.003 $的$3σ$偏见时,第五款给出了$3σ$检测。但是,通过将许多小2.5%的天空区域的$ r $确定与任务的555 GHz数据相关联,我们可以识别并减轻偏见。该分析强调了大天空覆盖的重要性。我们表明,当仅使用低多物$ \ ell \ leq 12 $时,真实可能性的非高斯形状的不确定性平均比高斯近似值大30%。

PICO is a concept for a NASA probe-scale mission aiming to detect or constrain the tensor to scalar ratio $r$, a parameter that quantifies the amplitude of inflationary gravity waves. We carry out map-based component separation on simulations with five foreground models and input $r$ values $r_{in}=0$ and $r_{in} = 0.003$. We forecast $r$ determinations using a Gaussian likelihood assuming either no delensing or a residual lensing factor $A_{\rm lens}$ = 27%. By implementing the first full-sky, post component-separation, map-domain delensing, we show that PICO should be able to achieve $A_{\rm lens}$ = 22% - 24%. For four of the five foreground models we find that PICO would be able to set the constraints $r < 1.3 \times 10^{-4} \,\, \mbox{to} \,\, r <2.7 \times 10^{-4}\, (95\%)$ if $r_{in}=0$, the strongest constraints of any foreseeable instrument. For these models, $r=0.003$ is recovered with confidence levels between $18σ$ and $27σ$. We find weaker, and in some cases significantly biased, upper limits when removing few low or high frequency bands. The fifth model gives a $3σ$ detection when $r_{in}=0$ and a $3σ$ bias with $r_{in} = 0.003$. However, by correlating $r$ determinations from many small 2.5% sky areas with the mission's 555 GHz data we identify and mitigate the bias. This analysis underscores the importance of large sky coverage. We show that when only low multipoles $\ell \leq 12$ are used, the non-Gaussian shape of the true likelihood gives uncertainties that are on average 30% larger than a Gaussian approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源