论文标题

转换一次:频域中有效的操作员学习

Transform Once: Efficient Operator Learning in Frequency Domain

论文作者

Poli, Michael, Massaroli, Stefano, Berto, Federico, Park, Jinykoo, Dao, Tri, Ré, Christopher, Ermon, Stefano

论文摘要

光谱分析提供了信息降低信息维度的最有效范例之一,因为通常通过几个定期基础函数术语获得了天然信号的简单描述。在这项工作中,我们研究了旨在利用频域中结构的深层神经网络,以有效地学习空间或时间上的长期相关性:频域模型(FDMS)。现有的FDM基于复杂值的变换,即傅立叶变换(FT),并且分别在频谱和输入数据上执行计算的层。该设计介绍了相当大的计算开销:对于每一层,一个前向和反ft。取而代之的是,这项工作通过单个变换引入了用于频域学习的蓝图:一次变换(T1)。为了实现频域中的有效,直接学习,我们得出了具有方差的权重初始化方案,并研究了减少阶FDM中频率选择的方法。我们的结果明显简化了FDM的设计过程,修剪冗余变换,并导致3倍至10倍的加速,随着数据分辨率和模型大小的增加而增加。我们对学习时空动力学的解决方案操作员进行了广泛的实验,包括不可压缩的Navier-Stokes,围绕机翼的湍流和烟雾的高分辨率视频。 T1模型改善了FDM的测试性能,同时需要大大减少计算(对于我们的大规模实验,而不是32个小时),跨任务的平均预测错误降低了20%。

Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源