论文标题
极端球形对称渐近平面毛毛的黑洞之外的无效圆形测量学的存在
The existence of null circular geodesics outside extremal spherically symmetric asymptotically flat hairy black holes
论文作者
论文摘要
在以前的作品中,无效的圆形测量学的存在已证明是在非超级球体对称渐近平面黑洞的背景下得到了证明的。然后,这是一个有趣的问题,即极端黑洞是否在视野外具有无效的圆形测量学。在本文中,我们对极端的渐近渐毛黑孔表示关注。我们展示了最快的轨迹的存在,以绕一个极端黑洞。由于最快的轨迹对应于空圆形测量学的位置,因此我们证明了无效的圆形测量学存在于极端球形渐近渐近平坦的毛茸茸的黑洞之外。我们还指出,我们的证明也适用于非超级黑洞。
The existence of null circular geodesics has been proved in the background of non-extremal spherically symmetric asymptotically flat black holes in previous works. Then it is an interesting question that whether extremal black holes possess null circular geodesics outside horizons. In the present paper, we pay attentions to the extremal spherically symmetric asymptotically flat hairy black holes. We show the existence of the fastest trajectory to circle a extremal black hole. As the fastest trajectory corresponds to the position of null circular geodesics, we prove that null circular geodesics exist outside extremal spherically symmetric asymptotically flat hairy black holes. We also point out that our proof also works for non-extremal black holes.