论文标题

通过迭代推断进行更好的文档级别的关系提取

Towards Better Document-level Relation Extraction via Iterative Inference

论文作者

Zhang, Liang, Su, Jinsong, Chen, Yidong, Miao, Zhongjian, Min, Zijun, Hu, Qingguo, Shi, Xiaodong

论文摘要

文档级关系提取(RE)旨在从输入文档中提取实体之间的关系,该文档通常包含许多难以预测的实体对,只能通过关系推断才能预测其关系。现有的方法通常以一种通用方式直接预测输入文档的所有实体对的关系,而忽略了某些实体对的预测在很大程度上取决于其他对的预测结果。为了解决这个问题,在本文中,我们提出了一个新颖的文档级别模型,并迭代推断。我们的模型主要由两个模块组成:1)一个预期在实体对提供初步关系预测的基本模块; 2)引入的推理模块通过迭代地处理难以预测的实体对,以易于匹配的方式与难以预测的实体对进行迭代处理。与以前仅考虑实体对特征信息的方法不同,我们的推理模块配备了两个扩展的交叉注意单元,从而使其可以利用特征信息和在关系推断期间实体对的先前预测。此外,我们采用两阶段的策略来培训我们的模型。在第一阶段,我们只训练基本模块。在第二阶段,我们训练整个模型,其中引入了对比度学习以增强推理模块的训练。三个常用数据集的实验结果表明,我们的模型始终优于其他竞争基准。

Document-level relation extraction (RE) aims to extract the relations between entities from the input document that usually containing many difficultly-predicted entity pairs whose relations can only be predicted through relational inference. Existing methods usually directly predict the relations of all entity pairs of input document in a one-pass manner, ignoring the fact that predictions of some entity pairs heavily depend on the predicted results of other pairs. To deal with this issue, in this paper, we propose a novel document-level RE model with iterative inference. Our model is mainly composed of two modules: 1) a base module expected to provide preliminary relation predictions on entity pairs; 2) an inference module introduced to refine these preliminary predictions by iteratively dealing with difficultly-predicted entity pairs depending on other pairs in an easy-to-hard manner. Unlike previous methods which only consider feature information of entity pairs, our inference module is equipped with two Extended Cross Attention units, allowing it to exploit both feature information and previous predictions of entity pairs during relational inference. Furthermore, we adopt a two-stage strategy to train our model. At the first stage, we only train our base module. During the second stage, we train the whole model, where contrastive learning is introduced to enhance the training of inference module. Experimental results on three commonly-used datasets show that our model consistently outperforms other competitive baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源