论文标题

人机互动组织原型学习,用于标签有效的组织病理学图像分割

Human-machine Interactive Tissue Prototype Learning for Label-efficient Histopathology Image Segmentation

论文作者

Pan, Wentao, Yan, Jiangpeng, Chen, Hanbo, Yang, Jiawei, Xu, Zhe, Li, Xiu, Yao, Jianhua

论文摘要

最近,深度神经网络具有极大的先进的组织病理学图像分割,但通常需要大量的带注释的数据。但是,由于整个幻灯片图像和病理学家的大量日常工作量的吉普瑞克斯量表,在临床实践中获得用于监督学习的像素级标签通常是不可行的。另外,已经探索了弱努力的分割方法的图像级标签,但由于缺乏密集的监督,它们的性能并不令人满意。受到自我监督学习方法的成功启发,我们提出了一个标签有效的组织原型词典建筑管道,并建议使用获得的原型来指导组织病理学图像分割。特别是,利用自我监视的对比学习,编码器经过训练,可以将未标记的组织病理学图像贴片投射到一个歧视性嵌入空间中,在这些空间中,这些斑块被聚集在这些斑块中,以通过有效的病理学家的视觉检查来识别组织原型。然后,用编码器将图像映射到嵌入空间中,并通过查询组织原型词典来生成像素级伪组织面膜。最后,伪口罩用于培训具有密集监督的细分网络,以提高性能。两个公共数据集的实验表明,我们的人机互动组织原型学习方法可以达到可比较的分割性能,因为注释负担较小,并表现出其他弱监督的方法。代码将在出版时提供。

Recently, deep neural networks have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists' heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning methods, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists' visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes will be available upon publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源