论文标题

使用少量数据进行生物制造过程建模的多保真高斯流程

Multi-fidelity Gaussian Process for Biomanufacturing Process Modeling with Small Data

论文作者

Sun, Yuan, Nathan-Roberts, Winton, Pham, Tien Dung, Otte, Ellen, Aickelin, Uwe

论文摘要

在生物制造中,开发一个精确的模型来模拟生物处理的复杂动力学是一项重要但又具有挑战性的任务。这部分是由于与生物过程相关的不确定性,高数据采集成本以及缺乏学习生物过程中复杂关系的数据可用性。为了应对这些挑战,我们建议使用统计机器学习方法,多保真高斯流程,用于生物制造中的过程建模。高斯过程回归是一种基于概率理论的完善技术,它可以通过高斯噪声自然考虑数据集中的不确定性,而多保真技术可以利用具有不同水平的忠诚度的多种信息来源,因此适用于使用小数据进行生物普罗克斯建模。我们应用多保真高斯过程来解决跨细胞系的生物制造,生物反应器量表和知识转移的两个重大问题,并证明了其在现实世界数据集上的功效。

In biomanufacturing, developing an accurate model to simulate the complex dynamics of bioprocesses is an important yet challenging task. This is partially due to the uncertainty associated with bioprocesses, high data acquisition cost, and lack of data availability to learn complex relations in bioprocesses. To deal with these challenges, we propose to use a statistical machine learning approach, multi-fidelity Gaussian process, for process modelling in biomanufacturing. Gaussian process regression is a well-established technique based on probability theory which can naturally consider uncertainty in a dataset via Gaussian noise, and multi-fidelity techniques can make use of multiple sources of information with different levels of fidelity, thus suitable for bioprocess modeling with small data. We apply the multi-fidelity Gaussian process to solve two significant problems in biomanufacturing, bioreactor scale-up and knowledge transfer across cell lines, and demonstrate its efficacy on real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源