论文标题
通过未对准的训练对学习单图像脱脂
Learning Single Image Defocus Deblurring with Misaligned Training Pairs
论文作者
论文摘要
通过采用流行的像素损失,现有的散焦造型方法在很大程度上依赖于良好的训练图像对。尽管仔细收集了地面真相和模糊图像的训练对,例如DPDD数据集,但在训练对之间不可避免地不可避免地,使现有方法可能会遭受变形伪像。在本文中,我们提出了一个联合脱生和重塑学习(JDRL)框架,用于单像defocus defocus deblurring,并通过未对准的训练对。通常,JDRL由DEBLURING模块和空间不变的重新灌注模块组成,可以通过地面真相图像自适应地监督脱蓝色结果,以恢复尖锐的纹理,同时与模糊图像保持空间一致性。首先,在DeBlurring模块中,引入了双向光流的变形,以耐受脱布和地面真相图像之间的空间错位。其次,在重新灌注的模块中,通过预测一组各向同性模糊内核和加权图,将deblurred结果倒入空间与模糊图像对齐。此外,我们建立了一个新的单一图像Defocus DeBlurring(SDD)数据集,进一步验证了我们的JDRL,并使未来的研究受益。我们的JDRL可以应用于DPDD,RealDof和我们的SDD数据集的定量指标和视觉质量方面,以增强DeFocus Deblurring网络。
By adopting popular pixel-wise loss, existing methods for defocus deblurring heavily rely on well aligned training image pairs. Although training pairs of ground-truth and blurry images are carefully collected, e.g., DPDD dataset, misalignment is inevitable between training pairs, making existing methods possibly suffer from deformation artifacts. In this paper, we propose a joint deblurring and reblurring learning (JDRL) framework for single image defocus deblurring with misaligned training pairs. Generally, JDRL consists of a deblurring module and a spatially invariant reblurring module, by which deblurred result can be adaptively supervised by ground-truth image to recover sharp textures while maintaining spatial consistency with the blurry image. First, in the deblurring module, a bi-directional optical flow-based deformation is introduced to tolerate spatial misalignment between deblurred and ground-truth images. Second, in the reblurring module, deblurred result is reblurred to be spatially aligned with blurry image, by predicting a set of isotropic blur kernels and weighting maps. Moreover, we establish a new single image defocus deblurring (SDD) dataset, further validating our JDRL and also benefiting future research. Our JDRL can be applied to boost defocus deblurring networks in terms of both quantitative metrics and visual quality on DPDD, RealDOF and our SDD datasets.