论文标题
FMM加速的泊松求解器,用于使用功能扩展
An FMM Accelerated Poisson Solver for Complicated Geometries in the Plane using Function Extension
论文作者
论文摘要
我们描述了一种复杂几何形状中二维泊松方程的新的自适应求解器。使用经典的潜在理论,我们将解决方案表示为体积电位和双层电位的总和。我们首先以高阶精度将源数据扩展到更简单的区域,而不是评估给定域上的体积电位。这使我们能够使用有效的,几何形状 - 基于快速的多极算法来加速对体积电势的评估。为了施加所需的边界条件,它仍然只能使用适当修改的边界数据求解拉普拉斯方程。这是通过现有的快速,准确的边界积分方法来完成的。求解器的新颖性是用于创建源扩展的方案,假设它是在自适应四核树上提供的。对于边界相交的叶框,我们构建了一个通用的“模板”,并要求在域内部内的这些点的子集中提供数据。这种普遍性允许我们预先计算和存储一个插值矩阵,该矩阵用于将源数据推送到每个片段上的叶子节点,每个叶子节点都有完整的张量 - 产品网格。我们展示了该方法的速度,鲁棒性和高阶收敛,其中包括具有分段平滑边界的域。
We describe a new, adaptive solver for the two-dimensional Poisson equation in complicated geometries. Using classical potential theory, we represent the solution as the sum of a volume potential and a double layer potential. Rather than evaluating the volume potential over the given domain, we first extend the source data to a geometrically simpler region with high order accuracy. This allows us to accelerate the evaluation of the volume potential using an efficient, geometry-unaware fast multipole-based algorithm. To impose the desired boundary condition, it remains only to solve the Laplace equation with suitably modified boundary data. This is accomplished with existing fast and accurate boundary integral methods. The novelty of our solver is the scheme used for creating the source extension, assuming it is provided on an adaptive quad-tree. For leaf boxes intersected by the boundary, we construct a universal "stencil" and require that the data be provided at the subset of those points that lie within the domain interior. This universality permits us to precompute and store an interpolation matrix which is used to extrapolate the source data to an extended set of leaf nodes with full tensor-product grids on each. We demonstrate the method's speed, robustness and high-order convergence with several examples, including domains with piecewise smooth boundaries.