论文标题

部分可观测时空混沌系统的无模型预测

CFNet: Conditional Filter Learning with Dynamic Noise Estimation for Real Image Denoising

论文作者

Zuo, Yifan, Xie, Jiacheng, Fang, Yuming, Huang, Yan, Jiang, Wenhui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A mainstream type of the state of the arts (SOTAs) based on convolutional neural network (CNN) for real image denoising contains two sub-problems, i.e., noise estimation and non-blind denoising. This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines. The related works always exploit the estimated noise prior via channel-wise concatenation followed by a convolutional layer with spatially sharing kernels. Due to the variable modes of noise strength and frequency details of all feature positions, this design cannot adaptively tune the corresponding denoising patterns. To address this problem, we propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map. Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising. In addition, according to the property of heteroscedastic Gaussian distribution, a novel affine transform block is designed to predict the stationary noise component and the signal-dependent noise component. Compared with SOTAs, extensive experiments are conducted on five synthetic datasets and three real datasets, which shows the improvement of the proposed CFNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源