论文标题
部分可观测时空混沌系统的无模型预测
Variational Tensor Neural Networks for Deep Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Deep neural networks (NNs) encounter scalability limitations when confronted with a vast array of neurons, thereby constraining their achievable network depth. To address this challenge, we propose an integration of tensor networks (TN) into NN frameworks, combined with a variational DMRG-inspired training technique. This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space. Our variational algorithm utilizes a local gradient-descent technique, enabling manual or automatic computation of tensor gradients, facilitating design of hybrid TNN models with combined dense and tensor layers. Our training algorithm further provides insight on the entanglement structure of the tensorized trainable weights and correlation among the model parameters. We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.