论文标题

部分可观测时空混沌系统的无模型预测

Universal convex covering problems under translation and discrete rotations

论文作者

Jung, Mook Kwon, Yoon, Sang Duk, Ahn, Hee-Kap, Tokuyama, Takeshi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the smallest-area universal covering of planar objects of perimeter 2 (or equivalently closed curves of length 2) allowing translation and discrete rotations. In particular, we show that the solution is an equilateral triangle of height 1 when translation and discrete rotation of $π$ are allowed. Our proof is purely geometric and elementary. We also give convex coverings of closed curves of length 2 under translation and discrete rotations of multiples of $π/2$ and $2π/3$. We show a minimality of the covering for discrete rotation of multiples of $π/2$, which is an equilateral triangle of height smaller than 1, and conjecture that the covering is the smallest-area convex covering. Finally, we give the smallest-area convex coverings of all unit segments under translation and discrete rotations $2π/k$ for all integers $k\ge 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源