论文标题
部分可观测时空混沌系统的无模型预测
Evolution of Resistive Switching Characteristics in WO3-x-based MIM Devices by Tailoring Oxygen Deficiency
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We report on resistive switching (RS) characteristics of W/WO3-x/Pt-based thin film memristors modulated by precisely controlled oxygen non-stoichiometry. RS properties of the devices with varied oxygen vacancy (VO) concentration have been studied by measuring their DC current voltage properties. Switchability of the resistance states in the memristors have been found to depend strongly on the VOs concentration in the WO3-x layer. Depending on x, the memristors exhibited forming-free bipolar, forming-required bipolar and non-formable characteristics. Devices with high VOs concentration (~1*1021 cm-3) exhibited lower initial resistance and memory window of only 15, which has been increased to ~6500 with reducing VOs concentration to ~5.8*1020 cm-3. Forming-free, stable RS with memory window of ~2000 have been realized for a memristor possessing VOs concentration of ~6.2*1020 cm-3. Investigation of the conduction mechanism suggests that tailoring VOs concentration modifies the formation and dimension of the conducting filaments as well as the Schottky barrier height at WO3-x/Pt interface which deterministically modulates RS characteristics of the WO3-x based memristors.