论文标题
部分可观测时空混沌系统的无模型预测
Mathematical Programming Formulations for the Collapsed k-Core Problem
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In social network analysis, the size of the k-core, i.e., the maximal induced subgraph of the network with minimum degree at least k, is frequently adopted as a typical metric to evaluate the cohesiveness of a community. We address the Collapsed k-Core Problem, which seeks to find a subset of $b$ users, namely the most critical users of the network, the removal of which results in the smallest possible k-core. For the first time, both the problem of finding the k-core of a network and the Collapsed k-Core Problem are formulated using mathematical programming. On the one hand, we model the Collapsed k-Core Problem as a natural deletion-round-indexed Integer Linear formulation. On the other hand, we provide two bilevel programs for the problem, which differ in the way in which the k-core identification problem is formulated at the lower level. The first bilevel formulation is reformulated as a single-level sparse model, exploiting a Benders-like decomposition approach. To derive the second bilevel model, we provide a linear formulation for finding the k-core and use it to state the lower-level problem. We then dualize the lower level and obtain a compact Mixed-Integer Nonlinear single-level problem reformulation. We additionally derive a combinatorial lower bound on the value of the optimal solution and describe some pre-processing procedures and valid inequalities for the three formulations. The performance of the proposed formulations is compared on a set of benchmarking instances with the existing state-of-the-art solver for mixed-integer bilevel problems proposed in (Fischetti et al., A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs, Operations Research 65(6), 2017).