论文标题
部分可观测时空混沌系统的无模型预测
Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We investigate the Chandrasekhar mass limit for white dwarfs in various models of $f(R)$ gravity. Two equations of state for stellar matter are used: simple relativistic polytropic equation with polytropic index $n=3$ and the realistic Chandrasekhar equation of state. For calculations it is convenient to use the equivalent scalar-tensor theory in the Einstein frame and then to return in the Jordan frame picture. For white dwarfs we can neglect terms containing relativistic effects from General Relativity and we consider the reduced system of equations. Its solution for any model of $f(R)=R+βR^{m}$ ($m\geq 2$, $β>0$) gravity leads to the conclusion that the stellar mass decreases in comparison with standard General Relativity. For realistic equations of state we find that there is a value of the central density for which the mass of white dwarf peaks. Therefore, in frames of modified gravity there is lower limit on the radius of stable white dwarfs and this minimal radius is greater than in General Relativity.