论文标题
部分可观测时空混沌系统的无模型预测
Inference in Cluster Randomized Trials with Matched Pairs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies inference in cluster randomized trials where treatment status is determined according to a "matched pairs" design. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by a "matched pairs" design, we mean that a sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one cluster is selected at random for treatment. We study the large-sample behavior of a weighted difference-in-means estimator and derive two distinct sets of results depending on if the matching procedure does or does not match on cluster size. We then propose a single variance estimator which is consistent in either regime. Combining these results establishes the asymptotic exactness of tests based on these estimators. Next, we consider the properties of two common testing procedures based on t-tests constructed from linear regressions, and argue that both are generally conservative in our framework. We additionally study the behavior of a randomization test which permutes the treatment status for clusters within pairs, and establish its finite-sample and asymptotic validity for testing specific null hypotheses. Finally, we propose a covariate-adjusted estimator which adjusts for additional baseline covariates not used for treatment assignment, and establish conditions under which such an estimator leads to strict improvements in precision. A simulation study confirms the practical relevance of our theoretical results.