论文标题

部分可观测时空混沌系统的无模型预测

Fast Multiscale Functional Estimation in Optimal EMG Placement for Robotic Prosthesis Controllers

论文作者

Ren, Jin, Song, Guohui, Tabacu, Lucia, Xu, Yuesheng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Electrocardiogram (EMG) signals play a significant role in decoding muscle contraction information for robotic hand prosthesis controllers. Widely applied decoders require large amount of EMG signals sensors, resulting in complicated calculations and unsatisfactory predictions. By the biomechanical process of single degree-of-freedom human hand movements, only several EMG signals are essential for accurate predictions. Recently, a novel predictor of hand movements adopts a multistage Sequential, Adaptive Functional Estimation (SAFE) method based on historical Functional Linear Model (FLM) to select important EMG signals and provide precise projections. However, SAFE repeatedly performs matrix-vector multiplications with a dense representation matrix of the integral operator for the FLM, which is computational expansive. Noting that with a properly chosen basis, the representation of the integral operator concentrates on a few bands of the basis, the goal of this study is to develop a fast Multiscale SAFE (MSAFE) method aiming at reducing computational costs while preserving (or even improving) the accuracy of the original SAFE method. Specifically, a multiscale piecewise polynomial basis is adopted to discretize the integral operator for the FLM, resulting in an approximately sparse representation matrix, and then the matrix is truncated to a sparse one. This approach not only accelerates computations but also improves robustness against noises. When applied to real hand movement data, MSAFE saves 85%$\sim$90% computing time compared with SAFE, while producing better sensor selection and comparable accuracy. In a simulation study, MSAFE shows stronger stability in sensor selection and prediction accuracy against correlated noise than SAFE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源