论文标题
通过桥梁连接的上下文自适应深度神经网络
Context-Adaptive Deep Neural Networks via Bridge-Mode Connectivity
论文作者
论文摘要
机器学习模型在安全至关重要的应用中的部署伴随着这样的期望,即这样的模型在各种环境中会表现良好(例如,在不同的照明/天气条件下,用于街道标志的视觉模型应在农村,城市和公路环境中起作用)。但是,这些单型合适的模型通常是针对平均案例性能进行优化的,鼓励它们在名义条件下实现高性能,但会在具有挑战性或罕见的情况下暴露于意外的行为。为了解决这一问题,我们开发了一种新方法来培训与上下文相关的模型。我们扩展了桥模式连接性(BMC)(Garipov等,2018),以在连续度量的上下文中训练模型的无限集合,以便我们可以针对相应的评估上下文专门调整模型参数。我们通过多种镜头探索图像分类任务中上下文的定义,包括风险概况的变化,长尾图像统计信息/外观以及与上下文相关的分布变化。我们针对每种情况开发了BMC优化的新型扩展,我们的实验表明,在每种情况下,模型性能可以成功地调整为上下文。
The deployment of machine learning models in safety-critical applications comes with the expectation that such models will perform well over a range of contexts (e.g., a vision model for classifying street signs should work in rural, city, and highway settings under varying lighting/weather conditions). However, these one-size-fits-all models are typically optimized for average case performance, encouraging them to achieve high performance in nominal conditions but exposing them to unexpected behavior in challenging or rare contexts. To address this concern, we develop a new method for training context-dependent models. We extend Bridge-Mode Connectivity (BMC) (Garipov et al., 2018) to train an infinite ensemble of models over a continuous measure of context such that we can sample model parameters specifically tuned to the corresponding evaluation context. We explore the definition of context in image classification tasks through multiple lenses including changes in the risk profile, long-tail image statistics/appearance, and context-dependent distribution shift. We develop novel extensions of the BMC optimization for each of these cases and our experiments demonstrate that model performance can be successfully tuned to context in each scenario.