论文标题

健康研讨会的机器学习2022-扩展抽象轨道

Machine Learning for Health symposium 2022 -- Extended Abstract track

论文作者

Parziale, Antonio, Agrawal, Monica, Joshi, Shalmali, Chen, Irene Y., Tang, Shengpu, Oala, Luis, Subbaswamy, Adarsh

论文摘要

在第二届机器学习研讨会(ML4H 2022)上介绍的扩展摘要集合,该摘要实际上是在2022年11月28日在美国路易斯安那州的新奥尔良举行的。机器学习健康(ML4H)是研究健康的机器学习,包括理论工作和应用工作的长期研究场所。 ML4H 2022具有两个提交曲目:诉讼轨道,其中包含了技术成熟和严格工作的全长提交,以及一个扩展的抽象曲目,该曲目将接受不那么成熟,但创新的研究进行讨论。提交给ML4H专题讨论会的所有手稿均经过了双盲同行评审过程。该集合中包含的扩展摘要描述了创新的机器学习研究,重点是健康和生物医学中的相关问题。

A collection of the extended abstracts that were presented at the 2nd Machine Learning for Health symposium (ML4H 2022), which was held both virtually and in person on November 28, 2022, in New Orleans, Louisiana, USA. Machine Learning for Health (ML4H) is a longstanding venue for research into machine learning for health, including both theoretical works and applied works. ML4H 2022 featured two submission tracks: a proceedings track, which encompassed full-length submissions of technically mature and rigorous work, and an extended abstract track, which would accept less mature, but innovative research for discussion. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process. Extended abstracts included in this collection describe innovative machine learning research focused on relevant problems in health and biomedicine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源