论文标题

双曲线和有界价值的共同体学

Hyperbolicity and bounded-valued cohomology

论文作者

Petrosyan, Nansen, Vankov, Vladimir

论文摘要

我们将Gersten定理概括为限制映射的溢流性,以$ \ ell^{\ infty} $ - 组的共同体学。这导致了对双曲线组的亚组的应用,有限生成的组的准等级区别以及$ \ ell^{\ iffty} $ - 共同体学计算一些众所周知的组。一路上,我们获得了$ fp_2(\ Mathbb Q)类型组的双曲线标准,以及那些满足理性同源线性等值不平等的人,回答了Arora和Martínez-Pedroza的问题。

We generalise a theorem of Gersten on surjectivity of the restriction map in $\ell^{\infty}$-cohomology of groups. This leads to applications on subgroups of hyperbolic groups, quasi-isometric distinction of finitely generated groups and $\ell^{\infty}$-cohomology calculations for some well-known classes of groups. Along the way, we obtain hyperbolicity criteria for groups of type $FP_2(\mathbb Q)$ and for those satisfying a rational homological linear isoperimetric inequality, answering a question of Arora and Martínez-Pedroza.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源